New Polymer Detection Method to Turn the (Pep)Tide in the Fight Against Water Pollution
Polymers are long chains of chemicals made up of much smaller, repeating units. Although they are rarely associated with the term, proteins too can be thought of as polymers because they are made up of thousands of subunits called ‘amino acids.’ Short chains of these amino acids are called peptides. Peptides can undergo specific and non-specific interactions with molecules, such as polymers, in different ways with different levels of affinity. In a new study published in ACS Applied Materials & Interfaces
The research team based the technique around a peptide that binds to a synthetic polymer called poly(N-isopropylacrylamide) (PNIPAM). They then introduced a fluorescent ‘tag’ called N-(1-anilinonaphthyl-4)maleimide (ANM) into the peptide to help obtain signals for its different interactions. The fluorescence of ANM varied based on the interaction of the peptide, thereby giving off a detectable signal. The researchers measured the signals from ANM in known solution concentrations of different polymers and used it to train a ‘linear discriminant analysis’ algorithm, which is one of supervised machine learning (see Figure 1). They then validated their technique with unknown samples and found that the sensor and algorithm could identify polymers in mixed solutions. Moreover, after adding small amounts of ethanol or sodium chloride to the solutions to slightly modify the chemical interactions, the machine learning algorithm could discriminate against polymers with similar properties. Finally, they tested the new peptide sensor and algorithm on actual wastewater and confirmed its ability to detect different water-soluble polymers.
“Our technique can be used to not only detect dissolved macromolecular pollutants like polymer in water, but also will be used to analyze how they enter into the environment,” says Dr. Serizawa. The research team further plans to extend the method to other peptides and polymers.
With such potent research to help guide the way, remediating and protecting our marine environments could soon become a reality!